Stable Predictive Control of Chaotic Systems Using Self-Recurrent Wavelet Neural Network

نویسندگان

  • Sung Jin Yoo
  • Jin Bae Park
  • Yoon Ho Choi
چکیده

Abstract: In this paper, a predictive control method using self-recurrent wavelet neural network (SRWNN) is proposed for chaotic systems. Since the SRWNN has a self-recurrent mother wavelet layer, it can well attract the complex nonlinear system though the SRWNN has less mother wavelet nodes than the wavelet neural network (WNN). Thus, the SRWNN is used as a model predictor for predicting the dynamic property of chaotic systems. The gradient descent method with the adaptive learning rates is applied to train the parameters of the SRWNN based predictor and controller. The adaptive learning rates are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of the predictive controller. Finally, the chaotic systems are provided to demonstrate the effectiveness of the proposed control strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear model predictive control based on fuzzy wavelet neural network and chaos optimization

In this paper a combined controller is proposed for nonlinear dynamical systems. The controller is constructed by a fuzzy wavelet network and nonlinear model predictive control. Chaotic optimization, which is fast and robust, is applied to generate optimized controlled input in nonlinear model predictive control. The ability of the fuzzy wavelet neural network and the proposed controller is sho...

متن کامل

Self Recurrent Wavelet Neural Network Based Direct Adaptive Backstepping Control for a Class of Uncertain Non-Affine Nonlinear Systems

This paper proposes an adaptive backstepping control strategy for a class of uncertain non affine systems using self recurrent neural networks. To assure the stable tracking of nonlinear non affine system, it is first converted to an affine like form and subsequently a wavelet based adaptive backstepping controller is developed. Self recurrent wavelet neural network (SRWNN) is used to approxima...

متن کامل

Learning Chaotic Dynamics using Tensor Recurrent Neural Networks

We present Tensor-RNN, a novel RNN architecture for multivariate forecasting in chaotic dynamical systems. Our proposed architecture captures highly nonlinear dynamic behavior by using high-order Markov states and transition functions. Furthermore, we decompose the highdimensional structure of the model using tensortrain networks to reduce the number of parameters while preserving the model per...

متن کامل

بهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه

In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...

متن کامل

Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks

Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005